The Formation Mechanism of a Spring Sea Fog Event over the Yellow Sea Associated with a Low-Level Jet

Abstract

In this paper, a dense sea fog event that occurred over the Yellow Sea (YS) on 9 March 2005 is investigated using the Weather Research and Forecasting Model version 3.1.1 (WRF v3.1.1). It is shown that the WRF can reasonably reproduce the main features of this fog case with a newly implemented planetary boundary layer (PBL) scheme developed by Mellor–Yamada–Nakanishi–Niino (MYNN). The low-level jet (LLJ) associated with this fog episode played an important role in triggering the turbulence. During the fog formation, sea fog extended vertically with the aid of turbulence. The mechanical production term resulting from wind shear contributed to the generation of the turbulence. WRF simulation results showed that the fog layer was thicker in the northeastern part of the YS than that in the southwestern part due to the intensity of the inversion layer and the LLJ. The topography test in which the mountain region in Fujian Province was removed showed that the roles of topography were to prevent the moisture from extending to land, to intensify the inversion layer, and to enhance the intensity of LLJ, as well as to elevate its altitude.

Publication
Weather and Forecasting